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ABSTRACT

Volatility in stock markets is a routine phenomenidmas been an interesting and challenging areanell for the Stock
Market investors since long. A lot of researchesevaarried out in the past taking help of variouathematical models
but still it is an ongoing process. This study waslertaken to look into the various mathematicaldel® applied to

analysis the volatility in stock markets. Varioagiations, tests for stationarity, statistical toalsd GARCH family models

for heteroscedasticity were undertaken in the study
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INTRODUCTION

Some people believe that stock market is a riskgketido invest their hard earned money. On therdthad, others want
to see the stock market bear and bull and to teop#nat hassle. Now, this is all volatility inghmarket which makes this
place unpredictable and risky one. It is believeat volatility and return are intermingled and vitity has an impact on
returns of the stock markedlittal (2009)analyzed volatility & return of the capital marlatindia from the perspective of
understanding market behavior. It was observed dahatial volatility declined from 2000 to 2007. Snihen, however
there was sharp increase in volatility. It is seew the market responds to different happenindggejpositive or negative
and how it effects the returns of the market. TISEB NSE are two major stock exchanges in Indianast of the share
transactions are done by the investors in theseetwehanges. Derivatives were introduced in theamditock market in
2001to control the volatility of Indian stock matk&hatia & Jindal (2020) described various typedi@nensions of
volatility in stock markets. Nisha (2014) appliedrious mathematical & statistical models for anagzstock market

return and volatility in her study.
Statistical Tools used to Analysis the Trends in 8tk Market Returns and Volatility Patterns

To calculate the returns, logarithmic differencaween two periods is primarily taken by applying tfollowing:

R.(InP,— InP,_;)*100 .
Where Rt is the return in period t, Pt and Pt-1 @ daily closing prices of the index at time danrl
respectively.
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Unit Root Test

For testing stationarity, let us consider an ARr{ibdel:

Y= D1Yi1 T & I

The simple AR (1) model indicated in above equatodlassified aandom walk modelin this AR (1) model if
[p1l<1, then the series is 1(0) i.e. stationary in lebet if p;= 1 then there exist what is called unit root peotl In other
words, series is non-stationary. Most economisisktthat differencing is warranted if estimated P029; some would

difference when estimated p > 0.8. Besides thagtlare few formal means of testing for statioyasfta series.
Augmented Dickey Fuller Test

Dickey-Totaler test involve estimating regressiguation and carrying out the hypothesis test. Timplest approach to
testing for a unit root is with an AR(1) model. AR(process:

¥Yt= €+ P¥i1+ & 3

Wherec & p are parameters; is assumed to be white noise<p<l1, then y is a stationary series whilp=fl , y
is a non-stationary series. If the absolute value is greater than one, the series is explosive.&fbe, the hypothesis of
a stationary series involves whether the absolateevofp is strictly less than one. The test is done bymeding an

equation with y;subtracted from both sides of the equation:

Ay, =¢+ YY1+ & 4

The DF test is valid only if the series is an AR@pcess; if the series is correlated at higheremidgs,
assumption of white noise disturbances is violalgte ADF controls for higher order correlation le tadding lagged

difference terms of dependent variable to rightehside of regression:
Ay =c+ vy 1+ 618y, 1 + 68y 2+ ..+ 8,0y, , + &
This augmented specification is then tested fahig regression.
Hya:y=0
Hi:y <0

The empirical research work done earlier has usisddol in their work (Kaur, 2004; Abdalla, 2012¢rdoloi&
Shankar, 2008 and Karmakar, 2007).

Phillips—Perron Test

In statistics, the Phillips—Perron test (namedrd®eter C. B. Phillips and Pierre Perron) is a tmit test. That is, it is used
in time series analysis to test the null hypothésid a time series is integrated of order 1. ftdsuon the DF test of the

null hypothesis§ = Oin
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Where A is the first difference operator. Like the augneentDickey—Totaler test, the Phillips—Perron test

addresses the issue which process generatingatafg fmight have a higher order of auto correlation tisaadmitted in
test equation — making,_4 endogenous & thus invalidating the Dickey—Fullgedt. Whilst the augmented Dickey—

Fuller test addresses this issue by introducing &g\, as regressors in test equation, the Phillips—Reast makes a

non-parametric correction to the t-test statisfibe test is robust with respect to the unspecifieétbcorrelation &
heteroscedasticity in the disturbance processsbfeguation. (Kaur, 2004; Bordoloi& Shankar, 2008 &armakar, 2007)

used the same for their research work.
Kwiatkowski—Phillips—Schmidt—Shin (KPSS) Test

In econometrics, Kwiatkowski—Phillips—Schmidt—ShiKPSS) tests are used for testing a null hypothéisé an
observable time series is stationary around a ihitéstic trend. The series is expressed as the afutine deterministic
trend, random walk & stationary error, the testhis Lagrange multiplier test of the hypothesis thatrandom walk has
zero variance. KPSS type tests are intended to leongmt unit root tests, such as the Dickey—Fullstst By testing both
the unit root hypothesis and stationarity hypothesne can distinguish series that appear to hi®rsday, series that
appear to have a unit root & series for which taedor the tests) are not sufficiently informatteebe sure whether they

are stationary or integrated. (Gupta and Basu, R@airlier literature mentioned the use of KPSS.
Autocorrelations and ACF (k)

Autocorrelation is one of statistical tools usedrfeeasuring the dependence of the successive terangiven time series.
Hence, it has been widely used to measure depeaderguccessive share price changes. Autocorreléiis been the
basic tool used to test the weak form of EMH. Th®eorrelation function ACF(k) for time series Yiidathe k lagged

series Yt-k is defined as:

o ye— Y)Y, -¥)
acrck) - [ ote]

7
WhereY is considered as overall mean of series with nrwbasiens. The SE of ACF (k) is given by:
Seacrx) = ==
Vn—k 8
When n is sufficiently large (n >50), the approxienaalue of standard error of ACF (k) is given by:
Seqcrao = % 0
To test whether ACF (k) is significantly differeinbm zero, the distribution of t is used;
_ ACF(k)
 Seacr(x) 10

As it is true for random walks, trends are alsorabterized by the extremely high autocorrelatioar Both
random walk series & series with trends, autocati@h ACF (k) are very high & decline slowly as tlagy value (k)

increases. At the same time the ACF (k) of the fifference series (price changes or returnsytatstically insignificant
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when the series is a random walk series. A randaik series drifts up and down over time. In sontgasions it may be
difficult to judge whether a trend or drift is oecdng. Hence to determine whether a series hagmifisant trend or
whether it is a random walk, the t-test is appbedseries of first differences. (Bordoloi & Shanka08).

Heteroscedasticity

One of most important issues before applying Géizexh Autoregressive Conditional Heteroscedasti¢®ARCH)
methodology is to first examine residuals for ewicke of heteroscedasticity. To test for the presefideeteroscedasticity
in residuals of KSE index return series, the LageaNultiplier (LM) test for ARCH effects proposeg Engle (1982) is
applied. In summary, test procedure is performedirby obtaining the residuatse from ordinary least squares regression
of conditional mean equation which might be an mgressive (AR) process, moving average (MA) preces a
combination of AR & MA processes; (ARMA) procesorFexample, in ARMA (1,1) process the conditionatam

equation will be as:

T, _0r, 4 +&+0i5_4 1

After obtaining the residuatse, the next step is regressing the squared residnadsconstant and q lags as:

z _ 2 2 2
e = ag+ aye;  + e, + . tager . + v, 1

The null hypothesis that there is no ARCH effectauprder g can be formulated as:

Hy:e; _a, % _

Against the alternative:

Hy a;=0

For atleastonei=1, 2, ...,q

The test statistic for joint significance of g-laglysquared residuals is the number of observatiores the R-
squared TR’ from regressionTRiis evaluated againg’.l(q) distribution. This is asymptotically locally stopowerful
test.

The Generalized Autoregressive Conditional Heterogdasticity (GARCH) Model

The conditional variance is represented as a lifveation of its own lags in this model. The singilenodel specification
is the GARCH (1,1) model:

Mean Equation r,= p+ &£ 13

- - Z z
Variance Equation o’ _w+ ay&_ 4+ 0, 4 14

wherew >0andey, =0and 5 =0,and
1. =return of the assst at time t

[ = average return
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g, = residual returns, defined as:

£ _ U E;

Where z is standardized residual returns (iie. random variable with zero mean & variance 1), aAdis
conditional variance. For GARCH (1,1), the constiai: > andf; - are needed to enswg is strictly positive. In this
model, the mean equation is written as a functiozpastant with an error term. Sina® is the one —period ahead forecast
variance based on past information, it is calledditional variance. The conditional variance equatspecified as a
function of 3 terms:

* A constant term w
* News about volatility from the previous period, sigad as the lag of the squared residual from megmation:

£t-1 ( ARCH term)

e Last period forecast variancef‘j‘;‘1 ( GARCH term)

The conditional variance equation models time vagynature of volatility of residuals generated fromean
equation. This specification is often interpretedai financial context, where an agent or tradedipte this period’s
variance by forming a weighted average of a lonmtaverage (constant), the forecast variance femhgeriod (GARCH
term), and information about volatility observedpirevious period (the ARCH term). If the assetimetwas unexpectedly
large in either the upward or the downward diractiten the trader will increase the estimate efwhriance for the next
period. The general specification of GARCH is, GAR®, q) is as:

2 q 2 p 2
gy = w+ Zj:1aj'€t—1 + Z_j:*lﬁigt—l 15

Where, p is number of lagged terms and q is the number of laggéderm
The Exponential GARCH (E-GARCH) Model
This model captures asymmetric responses of tinging variance to shocks & at same time, ensuras \thriance is

always positive. It was developed with the follog/ispecification:

2 Eg—1

™ Fr—1

Ep—1

In(o?) = o+ BLln(6? )+ a;

Fp—1 16
Wherey is asymmetric response parameter or leverage jeéean he sign of is expected to be positive in most
empirical cases so that a negative shock incrfaig® volatility or uncertainty while a positivéack eases the effect on
future uncertainty. In macroeconomic analysis,firial markets & corporate finance, a negative shatlally implies bad
news, leading to a more uncertain future. Consetyeshareholders would require a higher expectddrn to compensate
for bearing increased risk in their investment. ¥dequation is an E-GARCH (1,1) model. Higher ordeGARCH

models can be specified in a similar way; E-GAR@H() is as follows:

Ln(af) = w+ Z?:]_ B; Ln(of_j) + 21 o {ls‘_i| — Tz—r} —

Tp—i Fp—i

17
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The Threshold GARCH (T-GARCH) Model

Another volatility model commonly used to handledeage effects is the threshold GARCH (or T-GAR@hHdel. In T-

GARCH (1,1) version of model, the specificationcohditional variance is:

2 2 2 2
g; _ @ + ay &4t Ydt—l £.1 1 ﬁl ] 18

Where'if-l is a dummy variable, that is:

_ 1if e 3 20 badnews
d,_y = |

0 if Ei—1 =0, goodnews

The coefficienty is known as the asymmetry or leverage term. WherD, the model collapses to the standard
GARCH forms. Otherwise, when the shock is posifive., good news) the effect on volatility s, but when news is
negative (i.e., bad news) effect on volatilitycis.,y. Hence, ify is significant and positive, negative shocks havarger
effect ono% than positive shocks. This way, T-GARCH (p,q), teeditional variance equation is specified afo8:

2 Y 2z P Z
o = w+2X! (a; + yid, 1)E, + Ej_»_lﬁjﬂ'c—j 19
Hz'r }'rz' &ﬂdﬁj arenon—negativep arameterssatisfyingconditionssimilartothoseofGARCHmodels.

(Akgiray, 1989; Ballie and DeGennaro,1990; Lamourand Lastrapes, 1990; Corhay and Tourani, 1994p6d994;
and Sakata and White, 1998) used ARCH, GARCH aeid éxtension models in their research work.

CONCLUSIONS

The various mathematical, statistical & economstnicodels considered in the study & depict the wpigture of
analyzing the volatility of stock market. It inded simple statistical methods those are usedraxdst the volatility.
Another important segment is of testing statiogaoit the time-series data for which Unit Root TesSQF Test and PP
Test are applied. Econometric model i.e. KPSS Tadtbeen very popular for testing a null hypothésithe process of
checking stationarity of data. Autocorrelation tegn another important tool for measuring the dépece of successive
terms in a given time-series proceeding volatilifgrious GARCH family models are found very popudad significant
to analysis the volatility of stock prices. All & models are extensively applied by the researdhestock markets and

still the search of further models is going on.
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